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SUMMARY 
This paper presents laminar and turbulent mixed convection solutions of a driven cavity flow using the finite 
element method. For the laminar flow, distributions of velocity and temperature with and without the effect of 
buoyancy force are presented and compared. For the turbulent flow, governing partial differential equations of the 
thermal turbulence two-equation model and kinetic turbulence two-equation model are used. Corresponding 
results such as kinetic eddy difisivity, kinetic eddy energy, thermal eddy energy and their dissipations are 
presented. 
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INTRODUCTION 

In forced convective flow there is an analogy between the transfer of heat and momentum and it is 
customary to set the turbulent Prandtl number constant in all the regions. In mixed and natural 
convective flows the physical mechanism of thermal eddy difisivity is not the same as that of kinetic 
eddy difisivity, so it is incorrect to assume the turbulent Prandtl number as a constant, especially in 
regions near the non-adiabatic wall and the turbulent core region. Gooray et al.' supposed that a 
bouyancy force influeces the streamline curvature and pressure strain, which can be presented by 
modifling the expressions of the model constant C, and turbulent Prandtl number a,. Sagara2 
introduced K--E models in turbulent gravity flow to calculate the Reynolds stress and Reynolds heat 
flux and added a buoyancy production to the source terms of the Ic-equation but not the &-equation. 
Humphrey and To3 treated the Reynolds heat flux as a negative temperature gradient multiplied by 
uT/aT (crT = 0.9) and set the buoyancy production simultaneously in both the K- and &-equations in 
mixed and natural convective flows. 

In view of the above survey, there does not appear to be a general treatment that can be used for all 
kinds of flows and boundary conditions encountered in turbulent convection. Thus other models need to 
be developed that will be applicable to any turbulent flow in order to predict the Reynolds heat transfer. 
Since the K--E models are so powerhl for computing kinetic eddy difisivities, an idea to calculate the 
thermal eddy energy and its dissipation by two partial differential equations (i.e. Ke-Ee two-equation 
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models) and then to estimate the turbulent Prandtl number by a turbulence-scale model was mentioned 
by Arpaci and L a r ~ e n . ~  Furthermore, Newman et al.’ and Chung and Sung6 developed four- 
equation turbulence models to predict the turbulent boundary layer over a flat affected by buoyancy 
forces. This paper presents the four-equation models and applies them to two-dimensional recirculation 
flows. 

In analysing two-dimensional turbulent flows, various wall function treaments are used to calculate 
the boundary conditions of kinetic eddy energy and its dissipation at a distance from the wall. In the 
near-wall region of mixed convective flows a buoyancy force exists which influences the velocity 
distributions; therefore another treatment of boundary conditions is used in this paper for the four- 
equation models (i.e. to set them directly at the walls). 

Taylor et al.7 successhlly predicted turbulent flows by the finite element method. Smith’ applied the 
K--E model and finite element method with a coarse element mesh but encountered numerical difficulties 
with solution convergence. When the source term in the turbulent equations are computed in the coarse 
elements, it is possible to yield unreasonable values and even improper negative values, which may 
result in divergence. This paper applies the K - - I - &  method7 to mixed convection problems and checks 
source terms in the computing process in order to avoid unreasonable source terms and accelerate 
convergence. 

GOVERNING EQUATIONS 

With the Reynolds analogy, the Reynolds stress and Reynolds heat flux are described respectively as 

and the governing equations are the continuity equation 

a u a v  -+-=o,  
hay (3) 

the x-axis directional momentum equation (the positive x-direction is set vertically upwards) 

the y-axis directional momentum equation 

av av I a Wau avTav u-+v-= ---(p+;pPK)+- (v++)- +- (v++) -  +--+-- (5 )  ax ay Pay ax a (  3 3 3 axay way 
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and the energy equation 

where vT and aT can be calculated by the four-equation models. 

FOUR-EQUATION MODELS 

The K--E equations work satisfactorily for recirculatin flows and accelerating and decelerating boundary 
layer flows. They are generally expressed as 

where G = 2 ( & 4 / a ~ ) ~  + 2(&1/ay)~ + (aU/ay + &I/&)* and uTg/%3T/ax is the buoyancy production. If 
the temperature is decreasing with height, the buoyancy force will increase the turbulence (i.e. the 
buoyancy production is positive); in contrast, if the temperature is increasing with height, the buoyancy 
force will decrease the turbulence (i.e. the buoyancy production is negative). 

The KO- and +equations can be obtained in exactly the same way as the K -  and &-equations. When we 
set a positive measure Kg = i(T')2, the governing equations become 

where GO = (aT/ax)2 + (aT/@)2 and the production terms in the 80-equation include two parts, one 
coming from source terms of kinetic eddy energy and the other from source terms of thermal eddy 
energy. Also, we set aT = +/aT, where oT is the turbulent Prandtl number and can be inferred from 
scales of turbulence as follows! 

Employing thermal scales of turbulence in (2) and denoting 8, le and Ug as characteristic scales of 
temperature, length and velocity respectively, we get 
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Also, from source terms of the Ke-equation in the scaling of equilibrium, i.e. 

we get 

Furthermore, the dissipation of kinetic eddy energy 

gives 

K312 K312 

43 E 
& a -  or lea--. 

Substituting (1 2) and (1 3) into (1 1) gives 

and we now define the turbulent Prandtl number as 

In order to reduce the number of iterations and to increase stability, the dissipation terms in (7H10) are 
expressed respectively as 

For a wall-bounded flow such as the driven cavity flow considered in this paper, some of the model 
constants are modified as 

C 2  = 2.0[1 - 0.3 exp(-R;)], (18) 

where R, = K2/ve .  
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DECIDING ON BOUNDARY CONDITIONS 

In forced convection flows, boundary conditions of K, E ,  K~ and E~ are generally set at a distance from the 
wall and determined via the existence of an equilibrium region between the hlly turbulent region and 
the viscous sublayer. In mathematical terms the equilibrium occurs when the total value of the source 
terms of the governsing equation is zero (i.e. the production of turbulence is equal to the dissipation of 
turbulence). In mixed and natural convection flows we can simply set boundary conditions on the walls; 
for example, one can add -2v (&~ ' /~ /&~)~  into the rc-equation and set K = 0 and E = 0 on the wall: 
where n is the co-ordinate normal to the wall, or directly set K = 0 and E = -2 a ~ ' / ~ / a n ) ~  on the wall.3 

temperature wall or cg = 0 on the adiabatic wall. 
The latter treatment is used in this paper. Similarly, let K~ = 0 and eg = 2a(&cg %2 /an)* on the constant 

PROBLEM STATEMENT 

Consider a driven capacity flow with positive x-direction vertically upwards as in Figure 1. The 
reference pressure (p + 5 PK = 0) is set at the centre of the region and other boundary conditions are set 
as follows. 

(i) On the driven wall 01 = 0) the buoyancy force has the maximum effect and aids the fluid in the 
direction of the driven wall velocity, so there is very thin and negligible viscous sublayer. We 
can treat these phenomena as a Couette flow4 and set boundary conditions directly on the wall: 

24 = ug, v = 0, T =  TH (4 = I), 

where 4 = (T - Tc)/(TH - TC). Taylor et al.' and Smith' set the equilibrium region at about 2% 
characteristic length away from the wall to calculate the reattaching point of recirculation. For the 
driving and buoyancy effect, 1% is set in this paper and the mixing length 1 of equilibrium 
becomes O.Olic'H, where K' and Hare the mixing length constant of 0.41 and the width of the 
flow region respectively. 

+O 

9 -0 

9 

9 -0 

- uo 

Figure 1. Scheme of a driven cavity flow region with width H and length H 
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(ii) On the other three walls ( x  = 0, x = H and y = H) 

u = 0, v = 0, T = TC (4 = 0),  

NUMERICAL METHOD 

This work divides the flow region into 100 or 144 elements. Solutions of laminar flow with forced and 
mixed convections and turbulent flow with mixed convection are calculated. For laminar flows the 
Galerkin weighted residual finite element formulations of governing equations are the same as those of 
Lee et a1.,9*’0 while for turbulent flows they need to be modified as follows. (a) For the continuity 
equation 

where Mi and Nj are four- and eight-node shape functions respectively. fb) For the x-axis directional 
momentum equation 

and (+)k = (f$’41?c1’2)k. (c) For the y-axis directional momentum equation 

(d) For the energy equation 
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Combining the four governing equations, i.e. (19)-(22), the matrix equation can be expressed as 

illl  =i,, 
where 

The elements of -.e matrix i1 are 

cll c12 c13 c14 

0 c 4 4  

-NigSTc (v + +)Njau/an 

b l , i = g  1 I,[ ]me+/ F [ (v + +)Nih/an 0 ] dTe. 
(a + ar)4aT/an 

Since the four equations of the turbulence model, i.e. (23)-(26), do not need to be calculated 
simultaneously, the matrix equation can be written in common as 

&I2 = i 2 ,  (28) 



MIXED CONVECTION IN A DRIVEN CAVITY 

where 

55 

4 j = [$jI* 
The elements ofthe matrix 2, are 

where in the Ic-equation $j = ‘cj and 

in the &-equation $j = cj and 

in the Ice-equation $j = Ue,j and 

and in the 88-equation $j = &e,j and 

The elements of the vector i2 are 

where in the Ic-equation 

in the &-equation 

in the ice-equation 
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and in the Ee-equation 

The frontal method is used in solving the matrix equation; if successive solutions +,, and 4n+l satisfy 
the criterion 

I+n+l - 4nlmax 10-3, 
lmax 

the iteration stops and solutions 
follows. 

are treated as convergent solutions. The solution process is as 

1. Solve the matrix equation (27) iteratively and determine ~ , + ~ , p , , + ~ ,  v,,+~ and T,,,. A laminar 
flow solution is finished at this step. For turbulent flows the mixing length distribution can be 
predicted at the iirst iteration by 

2. Solve the K-equation iteratively and derive K,+, (initially set the turbulent Prandtl number to 1.0). 
3. Solve the E-, K@- and &@-equations respectively and non-iteratively and derive E , , + ~ ,  K~,,,+, and 

%,n+l* 
4. update 

Figure 2. Dimensionless velocity distribution of laminar forced convectin with Re = I d  
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j 0 - L - c  

Figure 3. Dimensionless velocity distribution of laminar mixed convection with Re = 1 d and Gr/R$ = 1 .O 

Figure 4. Dimensionless velocity distribution of turbulent mixed convection with Re = 104 and Gr/R$ = 0.1 

5 .  Update 

6. Return to step 1 until solutions converge. 
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Figure 7.  Dimensionless kinetic eddy energy of turbulent mixed convection with Re = lo4 and Gr/R2 = 1 .O 

Figure 8. Dimensionless dissipation kinetic eddy energy of turbulent mixed convection with Re = lo4 and Gr/R$ = 0.1 

Figures 6 and 7 present distributions of kinetic eddy energy. The maximum occurs near the driven 
wall for large velocity gradient. The driven wail is a source for inducing turbulence and the turbulence is 
transmitted along the streamlines. Of course, the buoyancy force helps in transmitting the turbulence, as 
seen by comparing Figures 6 and 7. The same phenomena were found for its dissipation and the kinetic 
eddy difisivity; therefore only results for Gr/Rc? = 0.1 are shown in Figures 8 and 9. 

Figures 10 and 1 1 present temperature distributions of laminar forced and mixed convection 
respectively. Figures 12 and 13 present temperature distributions of turbulent mixed convection. In 
laminar flows, as seen in Figures 10 and 1 1, the temperature distribution is slightly influenced by the 
buoyancy force. In turbulent flows, as seen in Figures 12 and 13, the buoyancy force apparently 
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Figure 9. 
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Dimensionless eddy viscosity of turbulent mixed convection with Re = 104 and G r f R d  = 0.1 

Figure 10. Dimensionless temperature distribution of laminar forced convection with Re = Id 

decreases the temperature at the centre of the flow region. Also, temperature distributions of turbulent 
flows are very different from those of laminar flows, the former being a circulating type and the latter a 
diffusing type. 

Figure 14 presents distributions of thermal eddy energy. The maximum occurs near the driven wall 
for large absolute value of the temperature w e n t  vector. Around the centre of the flow region the 
temperature gradient is zero, so the thermal energy dissipates quickly. The same phenomena are found 
for the dissipation of thermal eddy energy as shwon in Figure 15. 

The heat transfer parameter Nu can be calculated by 
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I 

Figure 11. Dimensionless temperature distribution of laminar mixed convection with Re = 10' and Gr/Rg = 1 .O 

61 

Figure 12. Dimensionless temperature distribution of turbulent mixed convection with Re = lo4 and Gr/Rg = 0.1 

for the driven wall and by 

for the other three walls, where i indicates each wall and n and 1 are in the directions normal and tangent 
to the wall respectively. Results are presented in Table I. As shown in Table I, when 10 x 10 elements 
are used for Re = lo4 and GrfR2 = 1.0, there is 2.4% error between C Nui and Nu at y = 0, so 
12 x 12 elements are used in this case, yielding only 0.75% error. Humphrey and To3 computed the 
heat transfer rate of an open heated cavity across which fluid flows in a direction inclined at 45" to the 



62 S.-C. LEE AND C.-K. CHEN 

Figure 13. Dimensionless temperature distribution of turbulent mixed convection with Re = lo4 and Gr/R$ = 1 .O 

( X 1 0 0 )  

Figure 14. Dimensionless thermal energy of turbulent mixed convection with Re = lo4 and Gr/R$ = 1.0 

gravity force. They stated that when the value ofR$/Gr is large, such as R$/Gr > 2 1.3, the fluid does 
not enter the cavity, so the problem can be treated as a driven cavity flow. According to two cases 
calculated with R$/Gr = 0.85 and 21.3, they inferred the formula 

NU = 2 1. 16(Re2/Gr)o’43. (29) 

However comparing data between Table I and (29), the driven cavity flow seems to be found when 
R$/Gr > 37 in their study. 
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(x1001 
Figure 15. Dimensionless dissipation of thermal eddy energy of hubdent mixed convection with Re = 10'' and Gr/R2 = 1.0 

Table I shows the buoyancy force seems to have little influence on the Nusselt number and that 
< Nu,=H < NuFo in NU,=, < Nu,,=H < Nu,=H < NuFo in turbulent flows whereas Nu,,=H < 

laminar flows. 

CONCLUSIONS 

Finite element solutions of turbulent and laminar mixed convection flows in a driven cavity were 
presented. Results showed that the kinetic eddy energy and its dissipation had larger values near the 
driven wall. This is because the driven wall induced larger velocity gradients which enhanced the 
development of the kinetic eddy; then the kinetic eddy was transported and circulated around the cavity 
via convection. Similarly, owing to the larger temperature gradients near the heated wall, distributions of 
thermal eddy energy and its dissipation presented larger values near the wall. Because the order of 
temperature gradients in the flow region is small, the thermal eddy was dissipated rapidly and existed 

Table I. Nusselt number for various convection conditions 

Elements 10 x 10 12 x 12 

Re 1 o2 1 o4 1 o4 
Gr/Re2 0.0 0.1 1 .o 0.1 1 .o 1 .o 

x = o  2.342 2.328 2.278 22.50 22.3 1 22.74 
0.453 0.504 0.763 25.32 27.23 27.50 

49.93 49.99 x = H  4.881 4.980 5.360 
C Nui 7.676 7.812 8.401 97.40 99.47 100.23 

NU y = o  7.728 7.868 8.473 98.96 101.93 100-99 

N U i  ( Y = H  49.58 
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near the driven wall only. These physical phenomena reveal that is seems to be inadequate to treat the 
turbulent Prandtl number as a constant in mixed convection flow. The use of the thermal two-equation 
models appears beneficial in solving the flows described. 
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